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The term information visualization refers to com-
puter generated interactive graphical representa-

tions of information. In this article, it also refers to
the process of producing information visualization
representations. The field of information visualization
refers to the scientific community of researchers and
practitioners who are contributing or have contributed
to the field of study. This overview article aims to pro-
vide a brief introduction to information visualization.
The overview is primarily intended for the audience
who are not familiar with the field. The introduction
will focus on core motivations and ambitions of infor-
mation visualization, landmark and exemplar work
in the field, emerging trends and promising directions
of further growth. Specialized fields such as geovisu-
alization, software visualization, and visual analytics
are discussed briefly. For comprehensive coverage of
these specialized fields, interested readers are referred
to materials listed in the resources.

OVERVIEW

Information visualization is concerned with the
design, development, and application of computer
generated interactive graphical representations of
information. This often implies that information visu-
alization primarily deals with abstract, nonspatial
data. Transforming such nonspatial data to intuitive
and meaningful graphical representations is therefore
of fundamental importance to the field. The transfor-
mation is also a creative process in which designers
assign new meanings into graphical patterns. Like
art, information visualization aims to communicate
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complex ideas to its audience and inspire its users for
new connections. Like science, information visualiza-
tion must present information and associated patterns
rigorously, accurately, and faithfully.1

A common question is the relationship between
information visualization and scientific visualization.
A simple answer is that they are unique in terms of
their corresponding research communities. They do
overlap, but largely differ. Here are some questions
that might further clarify the scope of information
visualization.

First, is the original data numerical? Graphical
depictions of quantitative information are often seen
in the fields of data visualization, statistical graphics,
and cartography. For example, is a plot of daily
temperatures of a city for the last 2 years qualified
as information visualization? The answer to this
question may depend on another question: how easy
or straightforward is it for someone to produce the
plot? As Michael Friendly and Daniel J. Denis put
it,a unless you know its history, everything might
seem novel. By the same token, what is complex and
novel today may become trivial in the future. A key
point to differentiate information visualization from
data visualization and scientific visualization is down
to the presence or absence of data in quantitative
forms and how easy one can transform them to
quantitative forms. This is why researchers emphasize
the ability to represent nonvisual data in information
visualization.2

Second, if the data is not spatial or quantitative in
nature, what does it take to transform it to something
that is spatial and visual? This step involves visual
design and the development of computer algorithms.
It is this step that clearly distinguishes information
visualization from its nearest neighbors such as
quantitative data visualization. In a more formal
terms, this step can be found in an earlier taxonomy
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of information visualization,3 which models the
process of information visualization in terms of data
transformation, visualization transformation, and
visual mapping transformation. Data transformation
turns raw data into mathematical forms. Visualization
transformation establishes a visual–spatial model of
the data. Visual mapping transformation determines
the appearance of the visual–spatial model to the
user. On the other hand, if the data is quantitative
in nature, researchers and designers are in a
better position to capitalize on this valuable given
connection.

The connection between scientific and artistic
aspects of information visualization is discussed in
terms of functional information visualization and
aesthetic information visualization.4 The primary
role of functional information visualization is to
communicate a message to the user, whereas the goal
of aesthetic information visualization is to present
a subjective impression of a data set by eliciting a
visceral or emotive response from the user.

Geometry, Structure, and Semantics
The absence of a predefined geometry associated with
a given type of data is often seen as an important
indicator that differentiates information visualization
from scientific visualization. The distinction can be
profound as well as subtle. In information visualiza-
tion, researchers typically find themselves in need of
defining the semantics of visual displays as an integral
part of the design. In contrast, scientific visualization
researchers may need to choose a reference system for
the same reason, although the degree of complexity
may vary from a well-defined theory of a scientific phe-
nomenon to an initial exploration of a newly emerged
phenomenon. Similarly to define the meaning of geom-
etry, researchers need to characterize the meaning of
structural patterns, for example, what a tightly cou-
pled component of a network of coauthors represents.

The ultimate design question is whether salient
features of geometric or structural patterns convey
the intended message to the viewer. The challenge
for information visualization is that the attachment
of meaningful geometric or visual encoding is much
more arbitrary than its counterparts in scientific
visualization. Designers and viewers tend to share
much more of a common ground when viewing a
visualization of a storm or a tsunami than they do
when viewing the evolution of a multidimensional
and highly abstract topic. Science of science as an
application domain of information visualization, for
example, requires a higher order of abstraction than
scientific visualization. This is the primary criterion as
one draws the boundary of information visualization.

Creating the meaning of geometric and
structural patterns is both a core challenge and a
source of excitement in information visualization.
From the design perspective, the best information
visualization is the one that can effectively convey the
meaning to its users. From a user’s point of view, it
should be either intuitive in that most people will have
no problem to understand the intended meaning, or
easy to learn so that one can easily figure out through
interacting with the visualization. In reality, this is
a long process before it becomes clear what works
and with what constraints. More studies should fol-
low the rigorous approaches demonstrated by earlier
fundamental studies of elementary perceptual tasks.5–7

THE HOLY GRAIL
The holy grail of information visualization is for users
to gain insights. In general, the notion of insight is
broadly defined, including unexpected discoveries,
a deepened understanding, a new way of thinking,
eureka-like experiences, and other intellectual break-
throughs. In early years of information visualization,
it is believed that the ability to view the entirety of a
data set at a glance is important to discover interesting
and otherwise hidden connections and other patterns.
More recently, it is realized, with the rise of visual
analytics, that the actionability of information
visualization is essential and it emphasizes the process
of searching for insights instead of the notion of
insights per se.

Information visualization researchers have
addressed issues concerning how to measure insights
in the context of evaluative studies.8,9 Unlike research
in the data mining community on interestingness,
which aims to develop metrics and algorithms to iden-
tify the interestingness in given data, relatively few
concrete metrics have been derived in the field of infor-
mation visualization.10 Relevant concepts include
saliency, uniqueness, recency, and burstness.

A tough and ultimate question for information
visualization advocates to the general public and other
scientific and technological fields is what information
visualization can achieve that other ways can’t or at
least without paying a much higher price. In light
of MySpace, FaceBook, Twitter, and more, social
networking in cyberspace offers a new perspective
to the issue. IBM’s ManyEyes, for example, allows
users to make their own visualizations and share
their comments on visualizations made by others. The
social dimension may offer a new route to increase
the chance of getting insights, although research in
this direction has merely began.11 Social navigation,
the ability to blaze trails in a cyber information space,
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as what Vennevar Bush talked about in As We May
Think,12 is likely to play more important roles in
information visualization.

THE COMMUNITY

The world’s first symposium on information visu-
alization was the IEEE Symposium on Information
Visualization (InfoVis) that took place in 1995. The
IEEE InfoVis Symposium is widely regarded as the
flagship conference of the community. Since 2008,
InfoVis, the recently emerged Visual Analytics Sci-
ence and Technology (VAST), and IEEE Visualization
became closely coordinated events now known as
VisWeek.

In Europe, the London-based International
Conference on Information Visualization (IV) started
in 1997 and it is still running. Another annual
European symposium series was formerly called
VisSym and renamed to EuroVis from 2006.

In Asia and Pacific countries, the regional
information visualization symposium started in 2001
in Australia in the name of InVis.au. It became the
later APVIS—Asia Pacific Symposium on Information
Visualization later on until it took the current
PacificVis in 2008.

The first book of a collection of important publi-
cations on information visualization was published in
1999. The first dedicated international journal, Infor-
mation Visualization, was launched in 2002. More
recently, InfoVis Symposium papers are published
simultaneously as a conference paper and a journal
paper.

Many data-driven or data-laden fields organize
contests or competitions so that researchers and
developers can work on the same data set with their
own tools. Notable ones include American Statistical
Association Data Expo, which is the source of the cars
data set many have studied, KDD cup, VAST contest,
and, of course, the InfoVis contests. Information
visualization contests started in 2003. Topics of
InfoVis contests in the past include the literature of
the field itself, movie data, and sensor data. Lessons
learned from 2003, 2004, and 2005 InfoVis contests
are summarized by the organizers.13 Robert Kosara,
who organized more recent 2008 InfoVis contests, has
shared some interesting reflectionsb on ‘The Sad State
of the InfoVis Contest’.

MILESTONES

A good place to see information visualization in
a broader context is the list of milestones in the

history of thematic cartography, statistical graphics,
and data visualization maintained by Michael Friendly
and Daniel J. Denis.14,15 Their list starts with a
Konya town map made 6200 bc, arguably the
oldest known map of all. The list also includes
a few milestones that the information visualization
community is more familiar with, including Playfair’s
parallel time-series bar chart of prices of wheat,
wages, and monarchs in 1700s and John Snow’s dot
map of cholera deaths in 1800s. Milestones after
1975 are intentionally sparse, but includes some of
the milestones that have profound influences on the
emergence of the field of information visualization,
namely fisheye views in 1981,16 aesthetics and
information integrity in concepts such as data-link
ratio,17 Jacques Bertin’s Semiology of Graphics,5

parallel coordinate plots18 for high-dimensional data
analysis,19 a computational extension of Bertin’s
semiology of graphics,7 and Treemaps, a space-
filling visualization of hierarchies in nested rectangular
areas.20

In addition to the milestones on Friendly and
Denis’ list, the following ones are also remarkable to
the evolution of the information visualization field.
This is obviously an incomplete list.

• Force-directed graph drawing algorithms21–23;
constraint-based graph layout24;

• SemNet25;

• Cone trees26;

• Visualizing large networks27,28;

• SageBook29;

• Self-Organizing Maps30;

• Landscape and galaxy views2;

• Hyperbolic trees31; large networks in 3D hyper-
bolic trees32;

• First books33–36;

• Visual analytics research agenda37.

Here we highlight some of the widely known
works that have profoundly influenced the develop-
ment of information visualization.

Telling a Story
Charles Minard’s depiction of the Russian campaign
of Napoleon’s army is widely recognized as one of the
most compelling exemplars of storytelling (Figure 1).
It shows the size of the diminishing army on its way
to Moscow and the even more staggering losses on

Volume 2, Ju ly/August 2010  2010 John Wi ley & Sons, Inc. 389



Overview wires.wiley.com/compstats

22,000
6,000

Niemen R.

Berezina R.

42
2,

00
0

4,
00

0

10
,0

00

8,
00

0

14
,0

00

12
,0

00

28
,0

00

50
,0

00

20
,0

00 24
,0

00 37
,0

00

55
,0

00

87
,0

00

96
,0

00

100,000

100,000

10
0,

00
0

14
5,

00
0

17
5,

00
035

,0
00

50,000

30,000

Moscow

Moskowa R.

TarutinoMojaisk

Wirma

Orsha

Mohilow

Temperature graph

Botr

Studianka
Minsk

−11°

−20°on 23 Nov
−24°on 1 Dec

−30°on 6 Dec
−26°on 7 Dec

−21°on 14 Nov

−9°on 9 Nov

−5

−10

−15

−20

−25

−30 degrees

Pluie 24 Oct
Zero on 18 Oct

Molodeczno

Smorgoni

Polotsk

Gloubokoe

Kovno Vilna

Vitebsk

Smolensk

Dorogobongr

Chjat

Malojaroslavetz

12
7,

10
0

FIGURE 1 | Losses suffered by the Grande Armée during the Russian Campaign.c
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FIGURE 2 | John Snow’s dot map of cholera deaths.d

its retreat. Many modern information visualization
designers replicate the original design.

Making a Discovery
One of the most intriguing examples that have shed
light on the power of visual thinking is due to
John Snow’s investigation of the deaths of a cholera
epidemic in 1855s in London (Figure 2). Edward
Tufte gives a vivid historical account in his Visual
Explanations, pp. 27–37. Each death was shown as

a dot on a simple street map of London. It was
the concentration of dots that revealed the hidden
connection between the deaths and the contaminated
well.

Seeing the Big Picture
SmartMoney visualizes the ups and downs of stock
prices in the financial market. It organizes the
stock market in several high-level categories such
as financial, energy, health care, transport, and
technology. Each category is shown as a rectangular
area, which is in turn divided further into smaller
rectangular areas. Each of the smaller areas represents
the status of a particular company, for example, Dell
Computer +6.84% as shown in the map (Figure 3).
This organization is known as a treemap, originally
developed at the University of Maryland. SmartMoney
is one of the few successful stories of how information
visualization moves beyond research labs.

Seeing with Many Eyes
ManyEyes is one of a kind in information visual-
ization. It is a new ‘social kind of data analysis’
in the own words of its designers at IBM’s Visual
Communication Laboratory. ManyEyes enables many
people to have a taste of what is like to create your
own information visualization that they would other-
wise have no such chance at all. The public-oriented
design significantly simplifies the entire process of
information visualization. Furthermore, ManyEyes is
indeed a community-building environment in which
one can view visualizations made by other users, make
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FIGURE 3 | SmartMoney on April 3, 2009 (left) and April 16, 2009 (right). http://www.smartmoney.com/map-of-the-market/.

comments, and make your own visualizations. These
reasons alone would be enough to earn ManyEyes
a unique position in the development of information
visualization. ManyEyes and Wikipedia share some
interesting characteristics—both tap in social con-
struction and both demonstrate emergent properties
of a self-organizing underlying system. Figure 4 shows
the opening webpage of ManyEyes.

Aesthetics and Functionality
The art and science are both integral parts of
information visualization. Researchers and artists

have attempted to derive criteria that may tell us
when information visualization is art, when it is not,
and when it is in between.4 Gaviria distinguishes
functional and aesthetic information visualization.
The design of traffic lights is essentially functional,
whereas a landscape painting is certainly more on
the aesthetic side. It is often said that the purpose
of information visualization is insight, not just pretty
pictures. On the other hand, discussions of aesthetics
are inevitable in the design of evaluative studies and
searching for theoretical foundations of information
visualization. Is TextArc, shown in Figure 5, art
or science? What about Figures 6 and 7? Figure 5
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FIGURE 4 | ManyEyes. http://manyeyes.alphaworks.ibm.com/manyeyes/.
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FIGURE 5 | Alice’s
adventures in Wonderland
in TextArc. http://www.
textarc.org/.

shows Alice’s Adventures in Wonderland in TextArc.
Although TextArc was designed as a tool, it has
been in the Museum of Modern Art in New York.
According to Bradford Paley, its creator, engineers see
TextArc as a feat of engineering, artists as art, analysts
as a tool, and designers as design. As it seems, such
artefacts become a part of the world in their own

right and each of us may relate to our own unique
perspectives.

Figure 6 shows the three-dimensional vir-
tual worlds of several scientific domains’ citation
landscapes.38 Each sphere depicts a scientific publi-
cation. The height of the bar is proportional to the
number of citations the corresponding publication

FIGURE 6 | Knowledge
domain landscapes.38
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has received. The colors on the bar represent the time
when citations were made. The most recent citations
appear toward the top of the bar, whereas earlier
citations are in the lower part of the bar.

Figure 7 shows a recent example of a network
visualization of scientific journals derived from
clickstreams. Each node in the graph is a journal. Two
journals are connected if they are next to one another
in clickstream data. The visualized graph is a simplified
representation. A journal has to appear in at least 170
observations to qualify entering into the view. There
are 2307 such journals. Then only the five strongest
outbound relationships for each journal would be
retained and subsequently, a single edge between any
pair of journals is shown in the visualization. Finally,
the largest connected component was selected for a
fully interconnected visualization. The radius of each
node is scaled to the natural logarithm of the journal’s
degree centrality in order to avoid a cluttered map.

Visual Analytics
A newly emerged field of visual analytics has its
roots in information visualization as well as other

contributing fields. Visual analytics aims to support
analytical reasoning and decision-making activities
through the use of information visualization, sta-
tistical analysis, data mining, and other techniques.
One of the most notable documents in the relevant
literature is the research agenda of visual analytics.37

Visual analytics is celebrating its fifth anniver-
sary in 2009. It has its own symposium alongside the
IEEE InfoVis symposium. It also runs annual contest.
The community has substantial overlaps with the Info-
Vis community. Figure 8 is a screenshot of GeoTime, a
visual analytic system for investigating events in both
spatial and temporal dimensions.40

FOUNDATIONS

Gestalt Principles
Metaphors of an information space imply a definition
of metric that measures the distance in the abstract
space. The notion of an abstract space taps into what
is known as Gestalt Psychology, which gives principles
of our tendency to see patterns of individual items.
The central idea of Gestalt principles is that, as far
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FIGURE 8 | A screenshot of GeoTime.

as our perception and cognition are concerned, the
whole is more than the sum of parts. Most commonly
known Gestalt principles are proximity, similarity,
continuity, closure, figure and ground, and symmetry.
A comprehensive explanation of these principles and
a rich set of examples can be found in How Maps
Work41 in the context of cartography, that is, the
design of geographically based thematic maps.

The proximity principle says that we tend to see
groupings of individual items in a visual arrangement
based on the proximity between these items. Items
that are relatively close to one another tend to give us
a sense of similarity. In other words, we see individual
items in groups of some underlying similarity. This
principle has been adapted by the information visu-
alization community from the early stage. Algorithms
that can arrange information items in this fashion
tap into the proximity principle. Some interesting
examples include Bead42 and Information Mural.43

The similarity principle from Gestalt psychology
says that visual attributes such as the shape, color, and
texture are cues for us to group items, for example,
all the circles in one group and all the triangles in

another. The proximity and similarity principles can
be used simultaneously to reinforce each other.

The Mantra of Visual Information Seeking
The most widely known visual information seeking
mantra is given by Ben Shneiderman, University
of Maryland: Overview first, zoom and filter,
then details-on-demand.44 This mantra insightfully
summarizes the essential elements of interacting with
graphically presented information.

Designers of visual overviews commonly capi-
talize on metaphors that can give users a sense of
intuitiveness and familiarity. Naturally, metaphors
of an information space are particularly popular,
especially in 1990s, ranging from two-dimensional
maps, three-dimensional landscape views and con-
tours, to star fields and galaxies of information. An
important function of an overview is to depict inter-
relationships among units of information. Units of
textual information include words, sentences, docu-
ments, and collections of documents such as websites.
Units of visual information include scenes, episodes,
and libraries of videos.
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Information space metaphors naturally invite
navigational operations such as zoom, pan, tilt, and
rotate. One of the earlier claims and design goals of
information visualization is that good information
visualization should present information to users intu-
itively. Many filtering operations have been adapted
to enable users interact with dynamic information
visualization, including brushing, linking, dynamic
queries, and coordinated views.

In 1996, Shneiderman offered a taxonomy for
visual information seeking.44 The taxonomy divides
general visual information seeking into seven data
types and seven tasks. This taxonomy is one of
the earliest and most influential contributions to the
information visualization field.

Seven Data Types

• one-dimensional data;

• two-dimensional data;

• three-dimensional data;

• temporal data;

• multidimensional data;

• tree data;

• network data.

Seven Tasks

• overview;

• zoom;

• filter;

• details-on-demand;

• relate;

• history;

• extract.

The data type by task taxonomy has influenced
a generation of information visualization researchers.
Other notable efforts include the data state reference
model.3

The Pursuit of Insights
Reflections on insight-centric evaluation are moti-
vated by the increasing concern of how to establish
the effectiveness of interacting with information visu-
alization interfaces. On the one hand, it is almost a
community-wide consensus that insight is the ultimate
goal of information visualization. On the other hand,
the definition of insight in the information visualiza-
tion literature per se has been vague and ambiguous.
The nature of insight has been extensively studied in

the context of scientific discovery in cognitive science,
psychology, and history of science. Few connections
have been established so far between the study of
insight in other disciplines and the field of information
visualization. An intriguing introduction to some
of the recent understanding of the brain activities
that lead to insights can be found in a New Yorker
article The Eureka Hunt.45 The Nature of Insight is
a comprehensive collection of studies of insight.46

In a recently developed explanatory and com-
putational theory of scientific discovery, the nature
of insight is characterized by a brokerage mech-
anism and a burst function of recognition.47 The
brokerage mechanism echoes what is described in
the Eureka Hunt in that one arrives at insights by
linking previously unconnected thoughts. The theory
is computational and it is possible to formulate the
search for insights as a problem of searching for the
potential linkage between even the most unthinkable
relations. Initial studies of transformative discoveries
such as Nobel Prize winning discoveries are particu-
larly promising. This approach is particularly relevant
to visual analytics and insight-based evaluative stud-
ies because they can characterize insightful patterns in
terms of structural and temporal properties.

Within the information visualization commu-
nity, notable efforts on characterizing and measuring
insights include exploratory approaches as opposed
to benchmark-based experimental studies,9 lessons
learned from the first 3 years of InfoVis contests,48

and more recent reflection in the context of visual
analytics.8 An interesting framework of evaluating
interactive visualizations is proposed recently in
Ref 49. The framework is built on top of a generic
conceptual model in human–computer interaction,
namely Don Norman’s Seven Stages of Action.50

According to the Seven Stages of Action, two stages of
interacting with computer interfaces are particularly
problematic: execution and evaluation. The gulf of
execution and the gulf of evaluation are used to refer
to these problematic stages. The gulf of execution,
for example, should be narrowed so that users can
accomplish their tasks smoothly and seamlessly. The
gulf of evaluation should be narrowed so that users
can judge their progress accurately.

Much of the discussions in information visu-
alization on insights primarily address practical and
methodological issues concerning how evaluative
studies should be designed to capture the effectiveness
of an information visualization design in terms of
insights. The types of insights that are relevant
to information visualization and evaluative studies
have theoretical and practical implications. We
found two meta-analysis studies of information
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visualization.51,52 Given the growing calls for
theoretical foundations in the field, this is expected to
be a significant topic of research.

Theoretical Frameworks
The general consensus, as reported by a recent
workshop and a few other public presentations,
was that information visualization currently lacks
adequate theoretical foundations.53 As a result, many
approaches are ad hoc in nature. A week-long sem-
inar took place at Dagstuhl, Germany in mid-2007,
for example, addressed four potential directions for
developing new theories. The lack of theories becomes
particularly prominent in information visualization
courses and when designing empirical and evaluative
studies.

The search for theoretical foundations increas-
ingly introduces and adopts theories and conceptual
frameworks from other fields and disciplines. For
example, distributed cognition in human–computer
interaction is seen as a potential candidate for a the-
oretical framework for information visualization.54

Norman’s Seven Stages of Action, also in human–com-
puter interaction, provides a new insight into inter-
acting with information visualizations, specifically on
the gulf of execution and the gulf of evaluation.49

Many information visualizations lack a quanti-
tative measure that could indicate the overall quality,
uncertainly, novelty, and other evaluative metrics.
The focus on gulfs of execution and evaluation, for
example, has the potential to make progress in this
direction.

TECHNICAL ADVANCES
Some of the recent developments in information
visualization are worth noting. At the technical

level, scalability issues remain to be a long-lasting
challenge.55 Some of the algorithms developed for
clustering large-scale data sets in machine learning are
particularly appealing, such as Refs 56,57 and one
can expect these algorithms will soon find their ways
to information visualizations.

Edge Bundling
Edge bundling is an emerging strategy to solve a com-
mon problem in visualizing a densely connected graph
due to cluttered images caused by overlapping edges.
Avoiding edge crossings has been long recognized as
one of the constraints that could improve the clarity of
resultant visualizations. Recently, an interesting strat-
egy has emerged—that is the use of edge bundling tech-
niques in a variety of graph visualizations to increase
the clarity of visualized patterns. Bundling reduces
visual clutter. Visualizations with bundled edges make
it easier for viewers to see underlying patterns than
non-bundled versions,58 for example, as shown in Fig-
ure 9. Edge bundling is a generic technique in nature
because it can be applied virtually to all node-and-link
diagrams regardless the underlying layout algorithms.
In this sense, it is similar to other generic display tech-
niques such as fisheye views. A geometry-based edge
bundling example appears recently, showing promi-
nent patterns of migration in the USA59 (Figure 10).

Constraint-Based Graph Drawing
Another trend originated from the graph drawing
community is constraint-based graph drawing. Tim
Dwyer et al. are the leading researchers in this research
area.60 Many graph visualization applications can
benefit from the new development in this direction
because of the generic and valuable role in establishing
visual hierarchies and grouping (Figure 11).

(a) (b)

FIGURE 9 | Bundled edges in
graph visualization.58
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(a)

(c) (d) (e)

(b)

FIGURE 10 | Geometry-based edge bundling.59
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Logarithmic Transformations
One of the problems identified earlier on by the
information visualization community is the tension
between showing more local details while maintaining
users’ contextual awareness. The problem is known
as the focus + context problem. Many widely known
techniques in information visualization were indeed
developed originally to deal with such problems,
notably including fisheye views16 and hyperbolic
views.31 Along a similar vein, Figure 12 shows a
logarithmic view.61 Logarithmic transformations are
commonly used by astronomers when they need to
deal with multiple vast scales. The major advantage
of a logarithmic view is its computational scalability.
Like fisheye views, a logarithmic view also enlarges
some areas of display at the expenses of other
areas. Figure 13 illustrates the use of logarithmic
transformations of the sky. Astronomical objects
distributed across a wide span of multiple scales are
depicted in the same single sky map. See video of
mapping the universe with Sloan Digital Sky Survey.e

Other enabling and supporting techniques
include fast point-feature labeling algorithms,62

and fast network scaling algorithms that improve
semantically desirable but computationally expensive
algorithms such as Pathfinder network scaling.63–66

EMERGING TRENDS AND FUTURE
DIRECTIONS

Mixed-Initiative Interaction
Integrating perceptual guidelines from human vision
with an AI-based mixed-initiative search strategy is
a promising but challenging direction for informa-
tion visualization.67 Mixed-initiative interaction is
motivated by the observation that even experienced
designers cannot be expected to know everything
about how to construct effective visualizations due
to the diverse range of situated requirements. Fur-
thermore, designers often repeatedly utilize the same
basic design strategy. Consequently, the resulting visu-
alization may not be the best possible design option.
It is often more effective to be able to explore the
same set of data from different perspectives through
different visualization designs. Therefore, the goal of
mixed-initiative interaction is to augment designers
with an easy access to the existing body of knowl-
edge of proven and effective visualization design
options in a given scenario. The underlying princi-
ple is very similar to the concept of design pattern
and design language in the field of human–computer
interaction.
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FIGURE 13 | A circular logarithmically transformed map of the universe.f The circular structure in this visualization is a 2D projection of the
Universe based on the right ascension and the distance between the Earth and an astronomical object, such as stars, galaxies, or quasars.

Collaborative and Social Visualization
Tom Erickson is a pioneer in social computing.
His work on social translucence is about designing
social infrastructures that make collective activity
visible.g The key message is making social clues
visible and persistent helps online groups to govern
their activities. More recently, ManyEyes has opened
up a whole new area of information visualization.
Implications and dynamics of social navigation and
exploration through information visualization are
expected to raise many theoretical and practical
questions about the nature of insight and how one
may achieve various goals with and without sharing
a potentially diverse range of views offered by a
growing social network. Relevant readings in this
direction include Refs 68–71 on social clarity.

Future Directions
An increasing number of activities and writings have
examined the contemporary information visualization
field and looked ahead for motivating problems and
enlightening challenges that would lead the field to a
high level of development.

In 2004 IEEE Visualization, a panel specifically
focused on can we determine the top unresolved prob-
lems of visualization?72 Each panelist subsequently
published their own lists of unsolved problems. For
example, the top 10 unsolved problems73 identify
the need for new methodologies for empirical evalu-
ations and more attention to a better understanding
of elementary perceptual–cognitive tasks. The list of
problems also includes a better understanding of the
role of prior knowledge of viewers in maintaining
an effective dialog between information visualiza-
tion and its users. Many of the top 10 problems
remain to be challenges, such as the intrinsic qual-
ity measure problem, the scalability problem, and
the causality, visual inference, and prediction prob-
lem. Some of the problems identified in the more
recent visual analytics are also relevant, for example,
integrating information-theoretic views, developing
metrics for saliency and novelty, and bridging between
macroscopic and microscopic views.10

Illuminating the Path37 is an ambitious research
agenda for visual analytics. It addresses many issues
relevant to information visualization.

A major reflection by leading researchers in both
information visualization and scientific visualization is
summarized in the 2006 NIH/NSF/VRC Final Report:
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the full report74 and an abridged summary.75 The
report recommends an increase of funding levels from
government agencies and industries.

The 2007 Dagstuhl Workshop identified
collaborative information visualization and theory
building as major directions for future development.53

In the Visualization Summit 2007, groups of
researchers projected where information visualization
would be in 10 years.76 Their report also represents
collective thinking of researchers on the future of the
field.

The field of information visualization is inter-
disciplinary in nature. The field will benefit from
interconnections with a wide variety of other fields, for
example, developing and adopting some of the most
promising algorithms for information visualization
purposes. For example, some potentially significant
directions include scalable, high-performance algo-
rithms developed by machine learning and complex
network analysis for analyzing and visualizing large-
scale, multidimensional data, such as scalable com-
munity finding algorithms77 and fast EM clustering
algorithms,57 and algorithms of greater interpretabil-
ity for dimensionality reduction and automated sum-
marization, such as nonnegative matrix factorization
and tensor factorization.78,79

CONCLUSION
We conclude the overview with some recommen-
dations based on emerging trends and the most
promising directions for future research. All recom-
mendations are organized in terms of priority areas.
Most of them are interdisciplinary in nature.

Theoretical Foundations
• Pursuing the nature of insight should be broad-

ened to incorporate studies of creativity, dis-
covery, and problem solving in other fields and
disciplines.46,80

• Theoretical conceptualizations should adapt
design and communication frameworks.

• Theory building efforts should integrate informa-
tion theory and other theories that are capable of
defining metrics of information,81 uncertainty,82

and interestingness.83

• More research should focus on social dimensions
of information visualization enabled in social
information foraging and social networking.

Metrics
• Information metrics on uncertainty, interesting-

ness, saliency, and rarity.10

• Diagnostic and evaluative metrics of information
visualization.

Algorithms
• Develop and adopt scalable, high-performance

algorithms for analyzing and visualizing
large-scale, multidimensional data, such as scal-
able community finding algorithms76 and fast
EM clustering algorithms.57

• Incorporate algorithms of greater interpretabil-
ity for dimensionality reduction and automated
summarization, such as nonnegative matrix fac-
torization and tensor factorization.77,78

Design
• Establish design languages and design patterns.

• Develop conceptual and operational taxonomies
and enable mixed-initiative interaction.

• Focus on gulfs of execution and gulfs of
evaluation.

Visual thinking, focusing on the big picture, pur-
suing deep insights, and many other characteristics of
information visualization make it a compelling candi-
date across a wide variety of learning and information
processing tasks in a diverse range of application
domains. Information visualization needs to maintain
an open-minded community and reaches out to other
disciplines for motivating challenges as well as adapt-
able techniques. Information visualization is facing
not only a challenging and exciting future, but also
an increasing expectation and responsibility for an
insightful and enlightening world.

NOTES
ahttp://www.math.yorku.ca/SCS/Gallery/milestone/
sec1. html.
bhttp://eagereyes.org/blog/2008/sad-state-of-infovis-
contest.html.
chttp://www.napoleonic-literature.com/1812/
1812.htm.
dhttp://xxi.ac-reims.fr/fig-st-die/actes/actes 2000/
thouez/t13.gif.
ehttp://video.google.com/videoplay?docid=-82527051
02362324792.
f http://scimaps.org/dev/big thumb.php?map id=166.
ghttp://www.visi.com/∼snowfall/Soc Infrastructures
CACMfmt.pdf.
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